353,410 research outputs found

    Host and bacterial proteases influence biofilm formation and virulence in a murine model of enterococcal catheter-associated urinary tract infection

    Get PDF
    Urinary tract infections: targeting enzymes might help Identifying bacterial and host enzymes that support biofilm formation may help prevent urinary tract infections caused by catheters. Enterococcus faecalis bacteria is a leading cause of catheter-associated urinary tract infections, the most common type of hospital-acquired infections. Michael Caparon and colleagues at Washington University School of Medicine in Missouri, USA, studied these infections in mice. They examined the effects of two protein-degrading enzymes, both from the bacterium and one can be activated by urine trypsin-like protease from the animals. Mutations that impaired either one of the enzymes had no effect on the infection, but when both the bacterial enzymes were impaired by mutation the formation of biofilms was significantly reduced. Treating the mice with chemicals that inhibited both bacterial and host enzymes dramatically reduced catheter-induced inflammation and related problems. This suggests drugs targeting these enzymes could be useful in clinical care

    Enteric helminths promote Salmonella co-infection by altering the intestinal metabolome

    Get PDF
    Intestinal helminth infections occur pre dominantly in regions where exposure to enteric bacterial pathogens is also common. Helminth infections inhibit host immunity against microbial pathogens, which has largely been attributed to the induction of regulatory or type 2 (Th2) immune responses. Here we demonstrate an additional three-way interaction in which helminth infection alters the metabolic environment of the host intestine to enhance bacterial pathogenicity. We show that an ongoing helminth infection increased colonization by Salmonella independently of T regulatory or Th2 cells. Instead, helminth infection altered the metabolic profile of the intestine, which directly enhanced bacterial expression of Salmonella pathogenicity island 1 (SPI-1) genes and increased intracellular invasion. These data reveal a novel mechanism by which a helminth-modified metabolome promotes susceptibility to bacterial co-infection

    Presence of multiple bacterial markers in clinical samples might be useful for presumptive diagnosis of infection in cirrhotic patients with culture-negative reports

    Get PDF
    Bacterial infections in cirrhotic patients with ascites are associated with a severe prognosis and an increased risk of death. The microbiological standard tests for the diagnosis of suspected infection, based on culture test of blood and ascitic fluid, are, in many cases (30-40 %), negative, even when patients show symptoms of infection. A multiple culture-independent protocol was applied and evaluated as a diagnostic and prognostic tool for the detection of bacterial infection in cirrhotic patients. Sixty-four culture-negative samples obtained from 34 cirrhotic patients, with PMN < 250 cells/μl of ascitic fluid, were screened for the presence of bacterial DNA, endotoxin, peptidoglycan/β-glucan and microscopically visible bacterial cells. Correlations between the presence of multiple markers and various clinical and laboratory parameters were evaluated. Bacterial DNA was detected in 23 samples collected from 16 patients; a large part of these samples also showed the presence of other bacterial markers, which was associated with a worsening of liver functionality, a higher incidence of infections during the follow-up and a higher mortality rate in our cohort of cirrhotic patients. We believe that the detection of additional bacterial markers in bacterial DNA-positive clinical samples makes the bacterial presence and its clinical significance more realistic and might be useful as early markers of an ongoing bacterial infection and in establishing a clinical prognosis

    Patent Human Infections with the Whipworm, Trichuris trichiura, Are Not Associated with Alterations in the Faecal Microbiota

    Get PDF
    Background: The soil-transmitted helminth (STH), Trichuris trichiura colonises the human large intestine where it may modify inflammatory responses, an effect possibly mediated through alterations in the intestinal microbiota. We hypothesised that patent T. trichiura infections would be associated with altered faecal microbiota and that anthelmintic treatment would induce a microbiota resembling more closely that observed in uninfected individuals. Materials and Methods: School children in Ecuador were screened for STH infections and allocated to 3 groups: uninfected, T. trichiura only, and mixed infections with T. trichiura and Ascaris lumbricoides. A sample of uninfected children and those with T. trichiura infections only were given anthelmintic treatment. Bacterial community profiles in faecal samples were studied by 454 pyrosequencing of 16 S rRNA genes. Results: Microbiota analyses of faeces were done for 97 children: 30 were uninfected, 17 were infected with T. trichiura, and 50 with T. trichiura and A. lumbricoides. Post-treatment samples were analyzed for 14 children initially infected with T. trichiura alone and for 21 uninfected children. Treatment resulted in 100% cure of STH infections. Comparisons of the microbiota at different taxonomic levels showed no statistically significant differences in composition between uninfected children and those with T. trichiura infections. We observed a decreased proportional abundance of a few bacterial genera from the Clostridia class of Firmicutes and a reduced bacterial diversity among children with mixed infections compared to the other two groups, indicating a possible specific effect of A. lumbricoides infection. Anthelmintic treatment of children with T. trichiura did not alter faecal microbiota composition. Discussion: Our data indicate that patent human infections with T. trichiura may have no effect on faecal microbiota but that A. lumbricoides colonisation might be associated with a disturbed microbiota. Our results also catalogue the microbiota of rural Ecuadorians and indicate differences with individuals from more urban industrialised societies

    Bacterial Biofilm and its Clinical Implications

    Get PDF
    Microbial biofilm created huge burden in treatment of both community and hospital infections. A biofilm is complex communities of bacteria attached to a surface or interface enclosed in an exopolysaccharide matrix and protected from unfavorable conditions such as presence of antibiotics, host defense or oxidative stresses. Biofilms are often considered hot spot for horizontal gene transfer among same or different bacterial species. Furthermore, bacteria with increased hydrophobicity facilitate biofilm formation by reducing repulsion between the extracellular matrix and the bacterium. There is a marked increase in the rate of persons nonresponsive to antibiotic therapy for infections of the Urinary Tract (UTIs), burns and upper respiratory tract due to biofilm formations. It is estimated that 90% of nosocomial infections are mediated by biofilm. The role of biofilm in infections has become so great that the treatment of such antibiotic resistance infections is proving difficult and costly to health care systems. The biofilm related infections varied from dental plaque, destruction of prosthetic valve to death of cystic fibrosis patients. This review aims to provide a summary of role of bacterial biofilm and its clinical implications for the patients
    • …
    corecore